Gene-Based Multiclass Cancer Diagnosis with Class-Selective Rejections

نویسندگان

  • Nisrine Jrad
  • Edith Grall-Maës
  • Pierre Beauseroy
چکیده

Supervised learning of microarray data is receiving much attention in recent years. Multiclass cancer diagnosis, based on selected gene profiles, are used as adjunct of clinical diagnosis. However, supervised diagnosis may hinder patient care, add expense or confound a result. To avoid this misleading, a multiclass cancer diagnosis with class-selective rejection is proposed. It rejects some patients from one, some, or all classes in order to ensure a higher reliability while reducing time and expense costs. Moreover, this classifier takes into account asymmetric penalties dependent on each class and on each wrong or partially correct decision. It is based on nu-1-SVM coupled with its regularization path and minimizes a general loss function defined in the class-selective rejection scheme. The state of art multiclass algorithms can be considered as a particular case of the proposed algorithm where the number of decisions is given by the classes and the loss function is defined by the Bayesian risk. Two experiments are carried out in the Bayesian and the class selective rejection frameworks. Five genes selected datasets are used to assess the performance of the proposed method. Results are discussed and accuracies are compared with those computed by the Naive Bayes, Nearest Neighbor, Linear Perceptron, Multilayer Perceptron, and Support Vector Machines classifiers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ensemble Neural Networks with Novel Gene-Subsets for Multiclass Cancer Classification

Multiclass gene selection and classification of cancer are rapidly gaining attention in recent years, while conventional rank-based gene selection methods depend on predefined ideal marker genes that basically devised for binary classification. In this paper, we propose a novel gene selection method based on a gene’s local class discriminability, which does not require any ideal marker genes fo...

متن کامل

Sparse optimal scoring for multiclass cancer diagnosis and biomarker detection using microarray data

Gene expression data sets hold the promise to provide cancer diagnosis on the molecular level. However, using all the gene profiles for diagnosis may be suboptimal. Detection of the molecular signatures not only reduces the number of genes needed for discrimination purposes, but may elucidate the roles they play in the biological processes. Therefore, a central part of diagnosis is to detect a ...

متن کامل

Molecular classification of cancer types from microarray data using the combination of genetic algorithms and support vector machines.

Simultaneous multiclass classification of tumor types is essential for future clinical implementations of microarray-based cancer diagnosis. In this study, we have combined genetic algorithms (GAs) and all paired support vector machines (SVMs) for multiclass cancer identification. The predictive features have been selected through iterative SVMs/GAs, and recursive feature elimination post-proce...

متن کامل

A Comparison of SVM-based Evolutionary Methods for Multicategory Cancer Diagnosis using Microarray Gene Expression Data

Selection of relevant genes that will give higher accuracy for sample classification (for example, to distinguish cancerous from normal tissues) is a common task in most microarray data studies. An evolutionary method based on generalization error bound theory of support vector machine (SVM) can select a subset of potentially informative genes for SVM classifier very efficiently. The bound theo...

متن کامل

Diagnosis of Breast Cancer Subtypes using the Selection of Effective Genes from Microarray Data

Introduction: Early diagnosis of breast cancer and the identification of effective genes are important issues in the treatment and survival of the patients. Gene expression data obtained using DNA microarray in combination with machine learning algorithms can provide new and intelligent methods for diagnosis of breast cancer. Methods: Data on the expression of 9216 genes from 84 patients across...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009